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Abstract. We show that, if one assumes fermion generations to be given by a gauge symmetry, together
with a certain Higgs mechanism for breaking it, then the known empirical features of quark and lepton
mixing can be largely explained, including, in particular, the fact that the mixing (CKM) matrix element
Uµ3, responsible for the muon anomaly in atmospheric neutrinos, is near maximal, and much larger than
its quark counterparts Vcb and Vts, while the corner elements for both quarks (Vub, Vtd) and leptons (Ue3)
are all very small. The mechanism also automatically gives a hierarchical fermion-mass spectrum which is
intimately related to the mixing pattern.

The quark-mixing pattern, as measured by the Cabibbo–
Kobayashi–Moskawa (CKM) matrix, is now quite well
known. The latest databook [1] gives the absolute values
of the matrix elements as:




|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


 = (1)




0.9745 − 0.9760 0.217 − 0.224 0.0018 − 0.0045
0.217 − 0.224 0.9737 − 0.9753 0.036 − 0.042
0.004 − 0.013 0.035 − 0.042 0.9991 − 0.9994


 .

Information on the corresponding matrix for leptons is
also beginning to emerge from recent experiments on neu-
trino oscillations. In particular, the result from atmosphe-
ric neutrinos [2–5] shows that the mixing angle between
νµ and the heaviest ν3 state is near maximal, while the
absence of oscillation effects in some reactor experiments,
in particular CHOOZ [6], implies that the mixing of νe

to the same state, ν3, is rather small. From solar neutrino
data, the picture is not yet entirely clear. Of the three tra-
ditional solutions, namely (i) the small angle MSW, (ii)
the large angle MSW, and (iii) the long wave-length (or
vacuum, or just-so) oscillation (LWO), both (i) and (ii)
are under pressure from the latest Superkamiokande data
on day–night variation and flux [7], which seem to have a
slight preference for (iii), but the situation is still far from
settled. One can conclude at present only that the angle
between νe and the second heaviest state ν2 is either quite
small (i) or, again, near maximal (ii)–(iii). As a result, a

CKM matrix is suggested, roughly of the form:



|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|




=



? 0.4 − 0.7 0.0 − 0.15
? ? 0.56 − 0.83
? ? ?


 , (2)

where, for reasons which will be apparent later, we have
inserted for Ue2 the value suggested by the LWO solution
(iii). If CP violations are ignored, the elements denoted
by ? are obtainable by unitarity from the others.

In these mixing matrices, one notices some very out-
standing features:

(a) the off-diagonal elements in the quark CKM matrix
are all small or very small;

(b) the corner elements in both the quark and lepton
matrices are all very much smaller than the others;

(c) the Uµ3 element in the lepton matrix is much larger
(by (about a factor of 20) than its quark counterparts,
namely Vcb and Vts.

These features, together with the actual values that the
elements take, cry out urgently for a theoretical explana-
tion.

What we wish to show in this paper is that all the
above features together with the hierarchical fermion-mass
spectrum, can be very simply explained, and even semi-
quantitatively calculated in terms of a few parameters, if
one assumes generation to be an SU(3) gauge symmetry
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spontaneously broken in a particular manner. This obser-
vation is abstracted from a recently proposed scheme we
called the dualized standard model (DSM) [8,9], which is
based on a nonabelian generalization of electric-magnetic
duality [10]. Here, we shall do the following. First, we shall
distill and simplify the arguments to such an extent as to
make the mechanism, we hope, completely transparent.
Secondly, we shall make clear that the main mechanism is
independent of the concept of duality, thus freeing it from
our own theoretical bias, so that if one prefers (which we
ourselves do not, for reasons to be given later) one can ob-
tain similar results by grafting the proposed mechanism
on to some different, not necessarily dual, scheme. Thirdly,
we shall present a new, more systematic, fit, together with
a more detailed comparison with experiments using the
latest data, while making some points of detail not noted
before.

The idea that generation originates from a (sponta-
neously broken) horizontal gauge symmetry is not new.
The empirical fact that fermions seem to occur in three
and only three generations suggests SU(3). In analogy to
the electroweak theory, we then propose to assign left-
handed fermions to the fundamental triplet representation
and right-handed fermions to singlets. For breaking the
symmetry, a possibility is to introduce three SU(3) triplets
of Higgs fields, say φ(a), a = 1, 2, 3, with linearly inde-
pendent, say mutually orthogonal, vacuum values, namely
φ̄(a)φ(b) = 0, a 6= b at vacuum. Furthermore, we stipulate
that the three Higgs triplets be ‘indistinguishable’, so that
the action has to be symmetric under their permutations,
although the vacuum need not be thus symmetric.1

A possible potential for these Higgs fields is then:

V [φ] = −µ
∑
(a)

|φ(a)|2

+λ




∑
(a)

|φ(a)|2



2

+ κ
∑

(a) 6=(b)

|φ̄(a)φ(b)|2, (3)

for which a general vacuum can be expressed as

φ(1) = ζ



x

0
0


 ; φ(2) = ζ




0
y

0


 ;φ(3) = ζ




0
0
z


 , (4)

with
ζ =

√
µ/2λ, (5)

and x, y, z, all real and positive, satisfying:

x2 + y2 + z2 = 1. (6)

Such a vacuum breaks the permutation symmetry of the
φ, and also the SU(3) gauge symmetry completely. As a
result, all the vector gauge bosons in the theory acquire a
mass, eating up all but nine of the Higgs modes2.

1 In the DSM, these proposals are given some raison d’être,
because there, the φ are related to frame vectors in U(3), but
one need not take that into account if one so prefers.

2 The φ in fact break a larger U(3) symmetry, thus giving
nine massive vector bosons.

Next, given the above assignments of SU(3) represen-
tations to the left- and right-handed fermions, the Yukawa
couplings take the form

∑
(a)[b]

Y[b]ψ̄
a
Lφ

(a)
a ψ

[b]
R , (7)

which is symmetric under permutations of φ(a) as required.
As a result, the tree-level mass matrix for each of the four
fermion types T (i.e., U - or D-type quarks, charged lep-
tons (L), or neutrinos (N)) is of the following factorized
form:

m ∝



x

y

z


 (a, b, c), (8)

with a, b, c being the Yukawa couplings Y[b]. Of more rel-
evance to the mass spectrum is the matrix mm†, which
takes the form:

√
mm† = mT



x

y

z


 (x, y, z). (9)

This is of rank 1, having only one nonzero eigenvalue with
eigenvector (x, y, z), the components of which, being Higgs
vacuum expectation values (VEV), are independent of the
fermion type T . Hence it is already the case at tree-level
that (i) the fermion-mass spectrum is hierarchical, with
one generation much heavier than the other two; and (ii)
the CKM matrix, giving the relative orientation between
the eigenvectors of the up- and down-type fermions, is
the identity matrix. Both of these conditions give sensi-
ble zero-order approximations, at least for quarks, to the
experimental data.

Consider next one-loop corrections. It is not hard to
see that the corrected fermion mass matrix m′ will remain
in a factorized form. The reason is that only those loops
involving the generation-changing gauge and Higgs bosons
can affect the factorization, and of these, the gauge bosons
couple only to the left-handed fermions, while the Higgs
bosons have couplings which are themselves factorizable.
Indeed, it appears that the factorized mass matrix will
survive to all orders in perturbation. As a result, we have

√
m′m′† = m′

T



x′

y′

z′


 (x′, y′, z′), (10)

where the corrected vector (x′, y′, z′) depends both on the
fermion type and on the energy scale. At the one-loop
level, the vector (x′, y′, z′) remains real so that there is no
CP violation at this level.

The scale dependence of m′ above is a special case
of a mass matrix that rotates with the energy scale. In
itself, this is not unusual, since already in the standard
formulation of the standard model, such a rotation of the
fermion mass matrix will result in the renormalization-
group equation from a nondiagonal CKM matrix [11], al-
though the effect there is small and therefore usually ne-
glected. When the effect of the rotation is appreciable, as
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it can be in our present case, then care has to be exercised
in its physical interpretation. When the mass matrix does
not rotate with scale, as in QCD where the scale depen-
dence induced by gluonic corrections appears as an overall
flavour-independent factor, there is of course no difficulty
in identifying the masses and state vectors of the physical
states. The matrix can be diagonalized at any scale, giving
a set of eigenvectors independent of the scale, although the
eigenvalues themselves will in general be scale-dependent.
These eigenvectors can then be taken unambiguously as
the state vectors of the physical states, while the mass of
each physical state can be defined as the running eigen-
value mi(µ) corresponding to the state i when taken at
the scale equal to its value, namely as the solution to the
equations mi(µ) = µ. However, if the mass matrix rotates
with scale, then its eigenvectors are also scale-dependent
and it becomes unclear how the physical state vectors are
to be defined. One may be tempted to define the eigenvec-
tor for the value mi at the scale µ satisfying the equation
mi(µ) = µ as the state vector for the physical state i, but
the state vectors defined in this way will not be mutu-
ally orthogonal, thus contradicting the ansatz that they
represent physically independent quantum states.

The solution we propose to adopt in this paper, which
is in fact the only one we can think of, is as follows. We run
the mass matrixm down in scale until we have for its high-
est eigenvalue, m3, a solution to the equation m3(µ) = µ.
We define this value at this scale as the mass m3, and the
corresponding eigenvector the state vector v3 of the heav-
iest generation. Below that energy, the state 3 no longer
exists as a physical state, and only the two lighter gen-
erations survive, the state vectors of which have to be
orthogonal to v3. We therefore define the mass matrix at
energies below m3 as the 2 × 2 submatrix m̂ of m in the
subspace orthogonal to v3. To find the mass and state vec-
tor for generation 2, we follow with m̂ the same procedure
as for 3 with m, running m̂ down in scale until we find
a solution to the equation m̂2(µ) = µ; we call this value
the mass m2, and the corresponding eigenvector at that
scale the state vector v2 of the generation 2. The state
vector of the lightest generation, 1, is now also defined, as
the vector orthogonal to both v3 and v2; we shall obtain
the mass of 1 by repeating the above procedure, namely
by running down in scale the expectation value 〈v1|m|v1〉
until its value equals the scale. In this way, each mass is
evaluated at its own appropriate scale, while the physi-
cal state vectors of the three generations are all mutually
orthogonal, as they should be.

Applying the above procedure to the factorized mass
matrix m′ in (10), one sees that for the heaviest genera-
tion fermion of type T , the mass m3 is m′

T , and the state
vector v3 is (x′, y′, z′), both taken at the scale µ, satisfying
the condition m′

T (µ) = µ. At that scale, the subspace or-
thogonal to v3 has zero-mass eigenvalues, and it is as yet
unclear which vector in it should correspond to the second
and which to the lightest generation. However, as the scale
lowers further, the vector (x′, y′, z′) rotates to a different
direction, giving nonzero components in the orthogonal
subspace, and hence a nonzero eigenvalue to m̂′. One can

3

2

v3

v1

v2

Fig. 1. The triad of state vectors for the three generations of
fermions

then define this nonzero value as m̂′
2(µ) and proceed as

above to determine the (nonzero) mass m2 and state vec-
tor v2 of the second generation. At the same time, one
determines the state vector v1 of the lightest generation.
The triad of state vectors so determined for the three gen-
erations are as shown in Fig. 1. The mass of the lightest
generation can also be found by running the scale down
further. As a result, all three generations will acquire finite
masses by this “leakage” mechanism, but the mass spec-
trum will be hierarchical, meaning that m3 � m2 � m1
qualitatively as experimentally observed. Further, since
a triad of state vectors for the three generations has now
been defined for each fermion type, CKM matrix elements
can be evaluated as the direction cosines between the state
vectors of the various up- and down-type fermions. And
since the loop corrections are in general different for up-
and down-types, the resulting matrix will be nondiagonal
giving nonzero mixing.

One sees, therefore, that in the present framework,
with a factorized mass matrix, nearly all the information
on fermion mixing and much of that on the fermion-mass
spectrum are encoded in a single 3-vector (x′, y′, z′) in
generation space, one for each fermion type. This vector
rotates with the energy scale, and as the scale changes,
it traces out a trajectory on the unit sphere. By study-
ing the shape of these trajectories and the speed at which
(x′, y′, z′) moves along them, one will be able to deduce
properties of the CKM matrix and the fermion-mass spec-
trum.

Let us then examine in more detail how loop correc-
tions affect the vector (x′, y′, z′). As already noted, only
those loop diagrams involving generation-changing bosons
can rotate the vector (x′, y′, z′). A closer examination then
reveals [12] that of the various one-loop diagrams, only
three give rotations, namely those in Fig. 2, where a full
line denotes a fermion, a wiggly line a generation-changing
gauge boson, and a dashed line a generation-changing
Higgs boson of the type φ(a) detailed above. Of the re-
maining diagrams, Figs. 2a,b give rotations of orderm2/ζ2

0
(where ζ0 is the smallest Higgs VEV) and are constrained
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by experiment to be negligible for the following reason. As
noted before, in breaking the generation SU(3) symmetry,
the corresponding gauge bosons all acquire masses of the
same or higher order than gζ0, g being the gauge coupling.
The exchange of these bosons will lead to flavour-changing
neutral current (FCNC) effects at low energies of the order
g2/(gζ0)2 ∼ 1/ζ2

0 . Present experimental bounds on FCNC
effects, such as an anomalous KL − KS mass difference,
will thus lead to very stringent lower bounds on the value
of ζ0, which is currently of the order 100 TeV [13]. Hence
the rotation due to Figs. 2a and 2b, even for the top quark
of mass 180 GeV, is only of order 10−6, and therefore en-
tirely negligible. There remains then only the Higgs loop
diagram (c) to be considered.

The rotation from the diagram (c) has been evaluated
[12], and gives:

d
d(lnµ2)



x′

y′

z′


 =

5
64π2 ρ

2



x̃′

1

ỹ′
1

z̃′
1


 , (11)

with

x̃′
1 =

x′(x′2 − y′2)
x′2 + y′2 +

x′(x′2 − z′2)
x′2 + z′2 , (cyclic) (12)

and where ρ2 = |a|2 + |b|2 + |c|2 is the Yukawa coupling
strength. By iterating this formula, one can compute the
trajectory traced out by the vector (x′, y′, z′), given any
initial value.

The choice of an initial value of the vector (x′, y′, z′),
which fixes the trajectory it is on, depends in principle on
the original VEV x, y, z of the Higgs fields, the masses of
the Higgs bosons, and also the Yukawa coupling strength
ρ, the last of which depends in turn on the fermion type.
One can thus attempt a global fit to the empirical CKM
matrix and fermion-mass spectrum with these quantities
as parameters. This is the approach adopted in [12] and a
good fit has been obtained. In this paper, however, we shall
consider only a particular solution suggested by the fit in
[12], which we believe may have a deeper meaning than is
as yet fully understood, namely when the Yukawa coupling
strength ρ is the same for all fermion types3. In this case,
the vector (x′, y′, z′) runs on the same trajectory with the
same speed for all fermion types, which differ thus only
in the positions that their physical states occupy on the
common trajectory. This simplifies the problem consider-
ably and renders the mechanism very transparent since
the whole set-up now depends on only three (real) pa-
rameters, namely the common Yukawa coupling strength
ρ and a common (normalized) initial vector (xI , yI , zI) at
some (high) arbitrary scale. With these, as we shall see,
one can already explain semiquantitatively nearly all the
features of quark and lepton mixing noted above, while

3 Notice that the normalization of the mass matrix is not cal-
culable perturbatively if the coupling is large, as in the DSM
scheme, and thus has to be regarded in general as a different
parameter from the Yukawa coupling ρ in the present frame-
work.

making as well some rough estimates for the lower gen-
eration fermion masses, given the masses of the heaviest
generation.

Before we proceed to a formal fit of the data with the
three remaining parameters, let us first examine the prob-
lem qualitatively, to try to anticipate the form that such
a fit will take. From (11) and (12), one sees that (1, 0, 0)
and 1√

3
(1, 1, 1) are both fixed points on the trajectory, and

that when going down in energy scale, the vector (x′, y′, z′)
runs away from (1, 0, 0) towards 1√

3
(1, 1, 1). Of course, it

will run faster in the middle than near the fixed points, at
a speed the actual value of which depends on the Yukawa
coupling strength ρ.

Consider first the fermion masses of the two highest
generations, where one recalls that in the present set-
up masses of the second generation arise only by leak-
age from the highest generation. It follows, then, from the
observation in the above paragraph, that those situated
near the fixed points will acquire proportionately smaller
masses from leakage, since the running is less efficient
there. Given now the empirical pattern that mc/mt <
ms/mb < mµ/mτ , while mt > mb > mτ , namely the
heavier the mass, the smaller the leakage, it seems advis-
able, in attempting a fit, to place mt fairly close to the
high-energy fixed point (1, 0, 0), so that mb and mτ , being
lower in mass and hence further away from the fixed point
will “leak” more of their masses into their second genera-
tion states. The resulting arrangement for the two highest-
generation states of the three fermion types U,D,L would
then roughly be as shown in Fig. 3.

For neutrinosN , the consideration is a little more com-
plicated. What enter into the leakage argument of Fig. 3
are the Dirac masses Mνi

, but neutrinos can also have
a Majorana mass B4. The physical masses mνi

for the
three generations of neutrinos are given by the seesaw
mechanism as M2

νi
/B. Experimentally, if neutrino masses

are assumed to be hierarchical, as they must be in the
present set-up, the data on atmospheric neutrinos [2–4]
give a (physical) mass to the heaviest neutrino ν3 of order
m2

ν3
∼ 10−3 − 10−2eV 2. For the second-generation neu-

trino ν2, solar neutrino data suggest a (physical) mass of
either m2

ν2
∼ 10−5eV 2 if one takes the MSW solution [14],

or m2
ν2

∼ 10−10eV 2 if one takes the LWO solution [15]. In
the MSW case, one obtains then Mν2/Mν3 ∼ 0.18 − 0.31,
while in the LWO case, Mν2/Mν3 ∼ 0.010 − 0.018. This
ratio for the MSW case is much bigger than the corre-
sponding figures for the other three fermion types U,D,L,
which in the present set-up means also bigger “leakage effi-
ciency”. Indeed, the leakage required by the MSW solution
is so big that one is easily convinced by a few trial calcu-
lations that it cannot be accommodated here, even if ρ is
allowed to take a very different value from the other three
fermion types. On the other hand, the leakage efficiency

4 In order for the leakage mechanism to work for neutrinos as
for the other fermion types, they have also to be Dirac fermions,
with their left-handed components forming a triplet of the hor-
izontal SU(3) symmetry, and their right-handed components
forming SU(3) singlets having a common Majorana mass.
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(a)

(b)

(c) Fig. 2. One-loop diagrams rotating
the fermion mass matrix

required by the LWO solution, which is only somewhat
bigger than that of the U -type quarks, can be readily ac-
commodated. Since the Dirac masses of neutrinos (depen-
dent on B) are empirically unknown, the heaviest state ν3
can, in principle, be assigned any location on the trajec-
tory so long as it gives a correct leakage efficiency to repro-
duce the mass ratio Mν2/Mν3 . One obvious possibility is
to locate ν3 close to t, but this will make the lepton CKM
matrix very similar to that of the quarks. A much more
interesting possibility is to place ν3 far down in the same
trajectory, as illustrated in Fig. 3, where since the vec-
tor (x′, y′, z′) is now pressing against the low-energy fixed
point 1√

3
(1, 1, 1) the leakage efficiency is again reduced,

compared to, say, D-type quarks and charged leptons, as
required. We choose to consider this second possibility.

As explained above, giving the locations on the tra-
jectory of the two highest generation states in the present
set-up also fixes the triad of state vectors of all three gen-
erations. It is then a simple matter to evaluate the CKM
matrix, the elements of which are just the direction cosines
between the triads of the U - and D-type quarks, or, for
leptons, between the triads of the charged leptons L and
the neutrinos N . Given that in Fig. 3, the quarks are much
closer in location than the leptons, so also will their tri-
ads be in orientation. It follows then immediately (a) that
the CKM matrix is much closer to the identity for quarks
than for leptons, a qualitative fact clearly borne out by a
comparison between the empirical CKM matrices (1) and
(2).

To study further the details of the various elements,
it is convenient to consider the limit where the locations
on the trajectory of the two highest generations are close
together, so as to make use of some familiar formulae in
elementary differential geometry. This is seen in Fig. 3
to be a reasonable approximation, at least for the three
fermion types U,D,L. In this case, the triad of state vec-
tors in Fig. 1 becomes the so-called Darboux triad [16]
where (i) v3 is the (radial) vector normal to the surface
(sphere), (ii) v2 is the tangent vector to the curve (tra-
jectory), and (iii) v1 is the vector orthogonal to both v2
and v3. The CKM matrix then becomes just the rotation
matrix of the Darboux triad on transporting it along the
trajectory from the U to the D location, for quarks, or
from the L to the N location, for leptons. To first order in
the displacment, this rotation matrix is given by a variant
of the well-known Serret–Frenet formula:

CKM ∼




1 −κg∆s −τg∆s
κg∆s 1 κn∆s

τg∆s −κn∆s 1


 . (13)

For our special case of a curve on a unit sphere, the geo-
desic torsion vanishes, τg = 0, and the normal curvature is
constant, κn = 1. As a result, one concludes immediately
(b) that the corner elements of the CKM matrix, being
of at least second order in the displacement ∆s, are much
smaller than the others, and (c) that the 23 and 32 ele-
ments, being proportional to the separation between t and
b for quarks and between τ and ν3 for leptons, are much
smaller for the quark than for the lepton CKM matrix.
Again, as already noted in the beginning, these predic-
tions are strongly borne out by experiment. The other
two off-diagonal elements depend on the geodesic curva-
ture κg, which depends in turn on both the trajectory
and the location on it, and will be harder for the present
mechanism to predict.

One sees, then, that even without performing any cal-
culations, one is already able to explain qualitatively most
of the outstanding features in the mixing pattern and the
hierarchical mass spectrum of both quarks and leptons.
What remains now is to attempt an actual fit with our
three parameters and see if we get reasonable quantita-
tive agreement. We propose to proceed as follows. Of the
quantities we can calculate, the most accurately measured,
experimentally, are the two mass ratios mc/mt,mµ/mτ

and the Cabibbo angle Vcd ∼ Vus. We shall therefore de-
termine our three parameters by fitting the experimental
values of these three quantities. Having then decided on
a trajectory for the (normalized) vector (x′, y′, z′) as en-
coded in some intitial value (xI , yI , zI), and on the value of
the Yukawa coupling strength ρ which governs the speed
with which the vector runs along the trajectory, we can
then just follow the procedure given above to calculate the
other parameters. We have to input the (Dirac) masses of
the heaviest generation. For the U - and D-type quarks
and charged leptons, we take from [1]:

mt = 173.8 GeV, mb = 4.247 GeV, mτ = 1.777 GeV,
(14)

the chosen value for mb being the geometric mean of the
given experimental limits. With these inputs, we calcu-
late the masses of c and µ and the quark CKM matrix
elements Vus and Vcd, adjusting the values of the Yukawa
coupling strength ρ and the initial values of the vector
(xI , yI , zI) until we obtain the experimental values given
in [1], namely:

mc = 1.1 − 1.4 GeV, mµ = 105.6 MeV,
Vus, Vcd = 0.217 − 0.224. (15)

This requires running the vector (x′, y′, z′) numerically,
with the formula (12), from the initial value (xI , yI , zI)
down to the second heaviest generation for each fermion
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Fig. 3. Trajectory traced out by the
vector (x′, y′, z′)

type. We take typically around 500 steps for each decade
of energy to achieve about 1 percent accuracy, normalizing
the vector (x′, y′, z′) again at every step. The quantities
ρ and mT which in principle also run, are taken here, for
lack of anything better, to be constants, any slow varia-
tions of which, we believe, would be masked in practice
by adjustments of the free parameters to fit the values in
(15). With the values of ρ and xI , yI , zI so obtained, we
can then make predictions for other quantities.

We distinguish two categories of such predictions. The
first requires only the running between the heaviest and
second heaviest generations; this category is expected to
be more reliable, given that our parameters have been
determined from running in the same range. These pre-
dictions include all the CKM matrix elements for both
quarks and leptons, and the masses of the strange quark
ms and the right-handed neutrino B. A list of such pre-
dictions on the CKM matrix elements is given in Table 1,
where the “predicted central value” is obtained by set-
ting mt = 173.8 GeV, the experimental central value,
mc = 1.241 GeV, the geometric mean of the experimental
limits, and 1

2 (Vus + Vcd) = 0.2205, the (arithmetic) mean
of the experimental limits, giving for the central values of
the fitted parameters:

ρ = 3.535, xI = 0.9999984, yI = 0.0017900,
zI = 0.0000179, (16)

where the initial value of the vector (xI , yI , zI) is taken
arbitrarily at the scale of 20 TeV. The predicted range is
obtained by varying mt within the quoted experimental
error of ±5.2 GeV, and mc and Vus, Vcd within their ex-
perimental limits quoted in (15) above; it corresponds to
the range of the fitted parameters:

ρ = 3.393 − 3.688,
xI = 0.9999959 − 0.9999994,
yI = 0.0010800 − 0.0028500,
zI = 0.0000075 − 0.0000391.

(17)

The agreement between prediction and experiment for the
quark CKM matrix in Table 1 is seen to be good for all
entries.

For neutrinos, as explained above, we need to input the
physical masses of the two heaviest generations. Taking
these as

m2
ν3

= 3.5 × 10−3eV 2, m2
ν2

= 4.3 × 10−10eV 2, (18)

which are the best fit values to the latest Superkamiokande
data given in [5,7], one obtains the entries for the lepton
CKM matrix in Table 1. On the other hand, if one varies
these input masses within the range permitted still either
by [2,4] or by [3,5,7],

m2
ν3

= (1.2 − 30) × 10−3eV 2,

m2
ν2

= (0.6 − 7.9) × 10−10eV 2, (19)

while keeping the central values (16) of the fitted param-
eters, one obtains:

Uµ3 = 0.6434 − 0.7108, Ue3 = 0.0617 − 0.0814,
Ue2 = 0.2221 − 0.2352. (20)

The agreement with experiment is again seen consistently
to be good, except for Ue2. Notice in particular (by com-
paring with the quark matrix) the close agreement with
the outstanding features (a)–(c) of the empirical mixing
matrices noted at the beginning of this paper. The ele-
ment Ue3 is small, as required by [6], while Uµ3, respon-
sible for the muon anomaly in atmospheric neutrinos, is
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Table 1. Predicted CKM matrix elements for both quarks and
leptons

Quantity Experimental range Predicted Predicted range
Central value

|Vud| 0.9745 − 0.9760 0.9753 0.9745 − 0.9762
|Vus| 0.217 − 0.224 (0.2207)
|Vub| 0.0018 − 0.0045 0.0045 0.0043 − 0.0046
|Vcd| 0.217 − 0.224 (0.2204)
|Vcs| 0.9737 − 0.9753 0.9745 0.9733 − 0.9756
|Vcb| 0.036 − 0.042 0.0426 0.0354 − 0.0508
|Vtd| 0.004 − 0.013 0.0138 0.0120 − 0.0157
|Vts| 0.035 − 0.042 0.0406 0.0336 − 0.0486
|Vtb| 0.9991 − 0.9994 0.9991 0.9988 − 0.9994
|Vub/Vcb| 0.08 ± 0.02 0.1049 0.0859 − 0.1266
|Vtd/Vts| < 0.27 0.3391 0.3149 − 0.3668
|V ∗

tbVtd| 0.0084 ± 0.0018 0.0138 0.0120 − 0.0156
|Uµ3| 0.56 − 0.83 0.6658 0.6528 − 0.6770
|Ue3| 0.00 − 0.15 0.0678 0.0632 − 0.0730
|Ue2| 0.4 − 0.7 0.2266 0.2042 − 0.2531

near maximal, corresponding to sin2 2θ > 0.97. As for Ue2,
the mixing angle involved in oscillations of solar neutrinos,
we recall from (13) above that, of the mixing elements in
the CKM matrix, this element corresponding to the geo-
desic curvature κg, is the one most sensitive to details in
the present scheme, being dependent both on the trajec-
tory and on its location on the trajectory. It is therefore
not surprising that, though still of a reasonable order of
magnitude, it does not come out as well as the others.

In addition, one predicts:

ms = 173 ± 5 MeV, B = 300 (223 − 418) TeV. (21)

The value of ms given is the running mass taken at the
scale equal to its value and cannot be directly compared
with the values given in the data tables, e.g., 100–300
MeV, taken at 1 GeV [17], or 70–170 MeV, taken at 2
GeV [1], but is seen to be reasonable. The predicted value
for B, which is of course experimentally yet unknown, is
interesting in that it is much lower than usual GUT esti-
mates and leads to much more accessible rates for neutri-
noless double beta decays, only 2–3 orders of magnitude
lower than the present limit.

The other category of predictions requires running fur-
ther down in energy scale to the lightest generation, with
parameters fixed by fitting the two heavier generations.
First, being extrapolations on a logarithmic scale, they
are, in any case, not expected to be reliable except as
rough order-of-magnitude estimates. Secondly, for quarks,
nonperturbative QCD corrections are important below 1–
2 GeV, which are hard to estimate. Nevertheless if one
persists, assuming still ρ and mT to be constants, one ob-
tains:

mu = 200 MeV, md = 15 MeV,
me = 6 MeV, mν1 ∼ 2 × 10−15 eV, (22)

to be compared with the experimental numbers:

mu = 1.5 − 5 MeV, md = 3 − 9 MeV,
me = 0.51 MeV, mν1 < 10 eV. (23)

While md and me may be considered reasonable, given
the expected inaccuracy, and mν1 has of course no diffi-
culty in satisfying the experimental bound, the predicted
value for mu is some 2 orders out. It should be stressed,
however, that the predicted value for mu is defined as the
running mass taken at the scale equal to its value, and it
is unclear whether it should be compared with the quoted
experimental value defined at the scale of 2 GeV. Indeed, if
one simply calculates the expectation value in the u state
of the running mass matrix m′ at GeV scale, one obtains a
value of only order 1 MeV, but it is also unclear whether
this is the number to be compared with the quoted ex-
perimental value. Barring this ambiguity, which applies
also to md, the comparison to experiment at an order-of-
magnitude level is not unreasonable, as the masses do at
least follow the clear hierarchical pattern seen in experi-
ment.

One concludes, therefore, that simply by assuming that
generations originate in an SU(3) gauge symmetry broken
in the particular manner of (3), one can already explain
the main empirical features in the mixing pattern together
with the hierarchical mass spectrum of the standard model
fermions. An important feature of the mechanism is that
the mixing pattern and the hierarchical mass spectrum
are intimately related. In particular, one recalls that for
neutrinos, the mass ratio mν2/mν3 between the two heav-
iest generations cannot be as large as that required by the
standard MSW solutions to the solar neutrino problem, or
otherwise one finds no solution with the present mecha-
nism, which admits only mass ratios of the order of that re-
quired by the vacuum or long wave-length (LWO) solution.
Hence, if the preference of the recent Superkamiokande
data for the LWO solution (iii) is maintained, it would
lend support to this mechanism.

Further, we have recovered here the bulk of the phe-
nomenological output of what we called the dualized stan-
dard model (DSM) without having introduced at all the
concept of nonabelian duality on which that scheme is
based [10]. The only phenomenological consequence of
DSM studied so far, which has been missed by the consid-
erations here, is the possible explanation of cosmic ray
air showers beyond the Greisen–Zatsepin–Kuz’min cut-
off. There seems thus a valid case for considering the
present mechanism on its own, independently of the orig-
inal “dual” tenets of the DSM. Indeed, one might at-
tempt to go a step further and bypass even the particular
symmetry-breaking scheme embodied in the Higgs poten-
tial (3), for the main effect of that is really just to make
the mass matrix factorize and rotate with respect to the
energy scale. If another scheme can be devised in which
a similar situation obtains, then an analogous conclusion
is likely to be achievable for explaining the empirically
observed mixing pattern.

We, however, adhere to our preference for the original
DSM scheme. The reason is that not only does the dy-
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namical mechanism examined in this paper arise naturally
there as a consequence of the dual framework, but even
the very existence of a broken SU(3) gauge symmetry and
of the Higgs fields required for its breaking emerges auto-
matically from the concept of nonabelian duality. Indeed,
if one accepts this concept, then the niches for generations
and Higgs fields would in any case already exist in the
standard model, and if they are not assigned these their
seemingly natural physical roles, they would still have to
be accounted for in some other manner, which may not be
easy to come by.

Lastly, it should be stressed that although the main
features of fermion mass and mixing patterns are shown
to follow from the dynamical mechanism described in this
paper, no consideration has been given here for possible
other predictions of the same mechanism violating exper-
iment. For the DSM scheme, some considerations have
been given to these questions, but if this mechanism is
grafted on to some other specific scheme, such questions
will of course have to be readdressed.
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